Matching Supply with Demand: An Introduction to Operations Management

Solutions to End-of-Chapter Problems

(last revised February 25, 2008; make sure to visit <u>www.cachon-terwiesch.net</u> for the latest updates, excel files, ppt files and other information)

Chapter 4

Q4.1. Empty System Labor Utilization

(a) Time to complete 100 units:

#1 The process will take 10+6+16minutes=32 minutes to produce the first unit.

#2 We know from problem xyz that resource 2 is the bottleneck and the process capacity is 0.1666 units per minute

#3 Time to finish 100 units

= 32 minutes $+\frac{99 \text{ units}}{0.1666 \text{ units/min}}$ =626 minutes

(b) + (c) + (d) Use Exhibit for Labor computations

#1 Capacities are: Resource 1: 2/10 units/ minute=0.2 units/minute Resource 2: 1/6 units/ minute=0.1666 units/minute Resource 3: 3/16 units/ minute=0.1875 units/minute Resource 2 is the bottleneck and the process capacity is 0.1666 units/minute

#2 Since there is unlimited demand, the flow rate is determined by the capacity and thereby 0.1666 units/minute; this corresponds to a cycle time of 6 minutes/unit

#3 Cost of direct labor = $\frac{6*10\$/h}{60*0.1666 units/h}$ =6\$/unit

#4 Compute the idle time of each worker for each unit:

Idle time for workers at resource $1=6\min/\text{unit}*2 - 10\min/\text{unit}=2\min/\text{unit}$ Idle time for worker at resource $2=6\min/\text{unit}*1 - 6\min/\text{unit} = 0\min/\text{unit}$ Idle time for workers at resource $3=6\min/\text{unit}*3 - 16\min/\text{unit}=2\min/\text{unit}$

#5 Labor content=10+6+16 min/unit=32min/unit

#6 Average labor utilization= $\frac{32}{32+4}$ =0.8888

Q4.2. Assign tasks to workers

1	
(2)	
(u)	
· ·	_

Worker	Task(s)	Processing Time (sec)	Capacity (units per hour)
1	1	30	120
2	2	25	144
3	3,4	75	48
4	5,6	45	80

The capacity of the current line is restricted by the capacity of the step with the longest processing time. Therefore, capacity = 1/75 sec = 48 units per hour.

(b)

Worker	Task(s)	Processing Time (sec)	Capacity (units per hour)
1	1,2	55	65.45
2	3	35	102.86
3	4	40	90
4	5,6	45	80

Therefore, capacity of the revised line = 1/55 sec = 65.45 units per hour.

(a) No matter how you organize the tasks, maximum capacity of the line is 65.45 units per hour, i.e. at a cycle time of 55 seconds.

Q4.3. Power Toys

(a) Since every resource has exactly one worker assigned to it, the bottleneck is the assembly station with the highest processing time (#3)

- (b) Capacity = $1 / 90 \sec = 40$ units per hour
- (c) Direct labor cost = Labor cost per hour / flow rate = 9*15 //h / 40 trucks per hour = 3.38 //truck
- (d) Direct labor cost in work cell= (75+85+90+65+70+55+80+65+80) sec/truck * \$15/hr = 2.77\$/truck
- (e) Utilization = flow rate / capacity 85 sec / 90 sec = 94.4%

Worker	Station(s)	Processing Time (sec)	Capacity (units per hour)
1	1	75	48
2	2	85	42.35
3	3	90	40
4	4,5	135	26.67
5	6,7	135	26.67
6	8,9	145	24.83

(f)

Q4.4. 12 tasks to 4 workers

(a)

Worker	Task(s)	Processing Time (sec)	Capacity (units per hour)
1	1,2,3	70	51.43
2	4,5,6	55	65.45
3	7,8,9	85	42.35
4	10,11,12	60	60

(a) Capacity = $1 / 85 \sec = 42.35$ units per hour

- (b) Direct labor content = (70+55+85+60) sec = 270 sec/unit or 4.5 min/unit
- (c) Labor utilization = labor content / (labor content + total idle time) = $270 \sec / (270 + 15 + 30 + 0 + 25 \sec) = 79.41\%$

(d) Note that we are facing a machine paced line, thus the first unit will take 4*85 seconds top go through the empty system. Flow Time = 4*85 sec + 99 / (1 / 85 sec) = 8755 sec or 145.92 min or 2.43 hrs

Worker	Task(s)	Processing Time (sec)	Capacity (units per hour)
1	1,2	55	65.45
2	3,4,5	50	51.43
3	6,7	70	51.43
4	8,9	35	102.86
5	10,11,12	60	60

(e) There are multiple ways to achieve this capacity. This table shows only one example.

Capacity = 1 / 70 units/sec = 51.43 units per hour

(f) There are multiple ways to achieve this capacity. This table shows only one example.

Worker	Task(s)	Processing Time (sec)	Capacity (units per hour)
1	1,2	55	65.45
2	3,4,6	55	65.45
3	5,8,10	55	65.45
4	7	50	72
5	9,11,12	55	65.45

Capacity = 1 / 55 units/sec = 65.45 units per hour

(g) We have to achieve a cycle time of 3600/72=50 seconds/unit. The following task allocation includes a lot of idle time, but is the only way to achieve the cycle time, given the constraints we face.

Worker Task(s)	Processing Time (sec)
----------------	------------------------------

1	1	30
2	2,3	40
3	4,5	35
4	6	20
5	7	50
6	8,9	40
7	10,11	40
8	12	20

Therefore, a minimum of 8 workers are required to achieve a capacity of 72 units per hour.

Q4.5. Geneva Watch

(a) *Station E* is the bottleneck with a process capacity of 1 unit every 75 seconds.

- (b) Capacity = $1 / 75 \sec = 48$ watches per hour
- (c) Direct labor content = 68 + 60 + 70 + 58 + 75 + 64 = 395 sec

(d) Utilization = $60 \sec / 75 \sec = 80\%$

(e) Idle time = (75 - 70) sec / 75 sec * 60 min per hour = 4 min per hour; as an alternative computation, we can observe that the worker has 5 seconds idle time per cycle (i.e. per unit) and that there are 48 cycles (units) per hour. Thus, the idle time over the course of an hour is 240 seconds=4 minutes.

(f) Time to produce 193 watches = time for the first watch + time for the remaining 192 watches = 6*75 seconds + 192*75 seconds=14,850 seconds=4h7min30sec. Production begins at 8:00, so 193 watches will be completed by 12:07:30

Q4.6. Yoggo Soft Drink

a. Bottling machine capacity: 1 bottles/second
Lid machine capacity: 0.333 bottles/sec
Two labeling machines capacity: 10/25=0.4 bottles/sec
Packaging machine capacity: 0.25 bottles/sec
So the process capacity is going to be 0.25bottles/sec=0.25*3600=900 bottles/hour

b. The packaging machine
c. It has no effect on the capacity since it is not the bottleneck
d. Process capacity = 90 boxes/ hour, implied utilization=process capacity/demand rate=0.666=66%

Q4.7. Atlas Inc

- a. The bottleneck is the worker with the highest processing time (across activities), which is Worker 2 (60 seconds)
- b. Capacity of the line is decided by the processing time of the bottleneck step. Hence we have Capacity = 1/60 sec = 60 units/hour
- c. Utilization is given by Flow Rate/ Capacity. Hence, we have Utilization = 45 sec/60 sec = 75%.
- d. As we are facing an empty system, the first unit would take (50+60+30+45+40)=225 seconds to go through the system. Hence, Flow time = 225 + (100-1)*60 = 102.75 minutes
- e. Labor Utilization is given by Labor Content / (Labor Content + Idle Time). Total Labor Content can be calculated as (50+60+30+45+40)=225 seconds. Idle time for each worker can be calculated as processing time of bottleneck processing time of worker. Hence, we have Labor Utilization = 225/(225+10+30+15+20) = 75%.
- f. Direct Labor Cost = Labor Cost per Hour / Flow Rate = 5*\$15/60 = \$1.25/unit
- g. Again, there are multiple configurations that minimize completion time, but in all of these the processing time of the bottleneck resource is 55 seconds. Hence maximum achievable capacity is 1/55 sec = 65.5 units/hour.
- h. Direct Labor Cost = (30+20+35+25+30+45+40) sec * \$15/hour = \$0.9375/unit
- i. The bottleneck is worker 3, and process capacity is given by 1/75 sec = 48 units/hour

Q4.8. Glove Design

a. Cutting has a process capacity of 1 glove/2 minutes*60 minutes = 30 gloves/hour. Dyeing has a process capacity of 1 glove/4 minutes*60 minutes = 15 gloves/hour. Stitching has a process capacity of 1 glove/3 minutes*60 minutes = 20 gloves/hour. Packaging has a process capacity of 1 glove/5 minutes*60 minutes = 12 gloves/hour. Therefore, the capacity is **a. 12 gloves/hour**.

b. The first statement is incorrect because packaging is the bottleneck. The second statement is incorrect because in a machine-paced line or conveyor belt, the unit spends the same amount of time at each station as the bottleneck. The fourth statement is incorrect because cutting is not the bottleneck. **c. By reducing packaging time the process capacity increases** is correct because packaging is the bottleneck.

c. If the demand is 10 gloves/hour, then the implied utilization at packaging = 10/12 =**d. 83.3%**.

d. A glove spends 5 minutes in each of 4 stations, so the flow time = 5*4 = c. 20 minutes.

Q4.9. Worker Paced

a. We know that Step 4 is the bottleneck and has a process capacity = to the capacity of the entire process because the utilization = 100%. We are given the fact that the process capacity = 36 units/hour, and Step 5 has a utilization of 40%. Therefore, the capacity of Step 5 = 36/0.4 = d. **90 units per hour.**

b. The step with the highest utilization is the bottleneck, or **d. Step 4.**

c. The step with the highest utilization has the highest process capacity. Step 1 has a process capacity of 36/(4/30) = 270 units/hour. Step 2 has a process capacity of 36/(4/15) = 135 units/hour. Step 3 has a process capacity of 36/(4/5) = 45 units/hour. Step 4 has a process capacity of 36/(4/5) = 90 units/hour. Therefore, the step with the highest capacity is **a. Step 1**.

d. There are 5 workers per hour to make 36 units. The wages per hour, then = 5*\$36 =\$180 in labor costs to make 36 units. Therefore, the direct cost of labor per unit = \$180/36 = **a. \$5 per unit.**